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Using contour integration and a multiplier technique, we establish a sampling
theorem with nonuniform complex nodes (tn)n # Z which applies to entire functions
of exponential type including band-limited L2-functions. The sequence (tn)n # Z must
satisfy supn # Z |R(tn)&n|<� and supn # Z |I(tn)|<�. The sampled function may
grow faster than any polynomial on the real line. � 1997 Academic Press

1. INTRODUCTION AND STATEMENT OF RESULTS

In recent years several authors [2, 8�10, 14] have established various
sampling theorems with nonuniform real nodes by using the method of
contour integration. There are also sampling theorems with nonuniform
complex nodes [7, 17]. However, their proofs are based on Hilbert space
methods and consequently they apply to band-limited L2-functions only.

In this paper we shall extend the method of contour integration to the
case of nonuniform complex nodes. Our main result is a Lagrange-type
interpolation formula (see Theorem 1.1) that applies to a class of entire
functions of exponential type which is considerably wider than the class of
band-limited L2-functions. The admissible functions may even grow faster
than any polynomial on the real line (see Corollary 1.2). As a consequence,
we also obtain a uniqueness theorem for entire functions of exponential
type which is much more general than the classical results [1, Chap. 9] as
far as freedom of the nodes is concerned (see Corollary 1.3).

As usual, let N, Z, R, and C denote the sets of natural, integer, real, and
complex numbers. For a complex number z we denote its real and
imaginary part by R(z) and I(z). Throughout this paper the nodes (tn)n # Z

are subject to the following conditions:
There exist positive integers L and N with N>L and positive real

numbers $ and I such that
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tn{0 for n{0; (1)

|R(tn)&n|�L for |n|�N ; (2)

R(tn+1)&R(tn)>$ for all integers n; (3)

|I(tn)|�I for |n|�N ; (4)

|tn |�|n|+L for |n|�N. (5)

First a few comments on these properties. Conditions (1)�(3) are the
standard hypotheses in sampling with nonuniform real nodes and are of
relevance in growth theorems such as the theorem of Duffin and Schaeffer
[1, p. 191]. Condition (3) ensures that the sequence (R(tn))n # Z is strictly
increasing and separated. If we restrict ourselves to real nodes, then (4) is
trivially satisfied and (5) is a consequence of (2). Thus in this case, our con-
ditions reduce to the standard ones. Note that (2) and (3) imply that $ is
1 at most.

Now we define the canonical product G corresponding to (tn) t # Z by

G(z) :=(z&t0) `
�

n=1
\1&

z
tn+\1&

z
t&n+ . (6)

Since

\1&
z
tn+\1&

z
t&n+=1+

z2&z(tn+t&n)
tn t&n

and

} z
2&z(tn+t&n)

tn t&n }�|z| 2+|z| (2L+2I )
(n&L)2

for all integers n with |n|�N, the product G converges absolutely and
uniformly on all compact subsets of C and therefore represents an entire
function.

We give two examples of a function G given by (6).

Example 1. Since the zeros ( jn)n # Z of the function J&(z)�z&, where J& is
the Bessel function of order &, satisfy jn=n?+c+O(1�n) as n � � and
j&n=&jn for n # N, the nodes (tn)n # Z defined by tn :=jn �? fulfill (1)�(5).
The canonical product G corresponding to the sequence (tn)n # Z is given
by J&(?z)1 (&+1)2&�(?z)& (cf. [16]). Kramer [11] proved a sampling
theorem for the nodes ( jn)n # Z . It is known that there is a connection
between Kramer's sampling theorem and sampling expansions generated
by Lagrange interpolation (e.g., [18]).
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Example 2. Obviously, the sequence (tn)n # Z defined by tn=n+t for
some fixed complex number t and all integers n satisfies the conditions
(1)�(5). A simple calculation yields that the canonical product G corre-
sponding to (tn)n # Z is given by

G(z)=
it

sinh i?t
sin(?(z&t)).

If t is equal to zero then G reduces to (1�?) sin ?z. In general, the canonical
product G is not obtainable in closed form.

Our result is as follows.

Theorem 1.1. Let (tn)n # Z be a sequence of nodes satisfying (1)�(5). Let
f and 8 be entire functions of exponential types _ and = such that

_+=�? (7)

and

| f (x) 8(x&`)|�C1(`)( |x|+1)&4L for x # R, ` # C, (8)

where C1( } ) is positive and bounded on compact subsets of C.
Then

f (z) 8(0)= :
�

n= &�

f (tn)
8(tn&z)

z&tn

G(z)
G $(tn)

(9)

for all z # C. Moreover, the convergence of the series is uniform on every
compact subset of C.

To get a sampling theorem for a large class of entire functions, it is
obviously desirable to choose a function 8 whose modulus on the real line
tends to zero rapidly.

A suitable example for the function 8 is given by

8(z) :=8=, k(z) :=\sin(=z�k)
=z�k +

k

, (10)

where = is a positive real number and k a positive integer. A simple con-
sideration shows that 8=, k is of exponential type = and satisfies

|8=, k(x)|=O( |x|&k) as x � \�.

Therefore, choosing 8 as in (10) with 0<=<? and k # N, we can apply
Theorem 1.1 to all entire functions f of exponential type ?&= satisfying

| f (x)|=O( |x|k&4L) as x � \�.
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Let us mention that the multiplier 8 given by (10) has been used by
various authors for the same purpose (see, e.g., [9, p. 81; 14; 15]).

There are also other possibilities of a suitable choice of 8. Given :>1,
=>0, an entire function �(:, =, } ) of exponential type = has been con-
structed in [4], a function which is nearly the best possible choice. More
precisely, its growth on the real line is given by

|�(:, =, x)|=O \exp \&
|x|

(log |x| ):++ as x � \�.

Note that if . is a non-trivial entire function of exponential type satisfying

|.(x)|=O(exp(&w( |x| ))) as x � \�,

where w( } ) is positive, then necessarily (cf. [4])

|
�

1

w(x)
x2 dx<�.

We may assume that �(:, =, 0)=1. Otherwise, we can consider the function
�� given by

�� (z) :=
k!

�(k)(:, =, 0)
�(:, =, z)

zk ,

where k is the order of �(:, =, } ) at zero. The function �� is also entire and
of exponential type =, has the same asymptotic behavior as �(:, =, } ), and
satisfies �� (0)=1.

Although the authors [4] gave a construction of the function �(:, =, } ),
it is not easily available for numerical purposes. However, in the following
application it is enough to know the existence of �(:, =, } ).

With � taking the role of 8 in Theorem 1.1, we obtain the following result
which extends a theorem of Rahman and Schmeisser [12, Theorem 3] from
equidistant to nonuniform complex nodes.

Corollary 1.2. Let (tn)n # Z be a sequence of nodes satisfying (1)�(5).
Let f be an entire function of exponential type _<? satisfying

| f (x)|=O \exp \ |x|
(log |x| )*++ as x � \�, (11)

where *>1.
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Then, choosing = # (0, ?&_], : # (1, *), and 8 :=�((1+:)�2, =, } ), the
following equality holds,

f (z)= :
�

n=&�

f (tn)
8(tn&z)

z&tn

G(z)
G$(tn)

(12)

for all z # C, where the series converges uniformly on all compact subsets
of C.

Note that in the corollary the conditions for f are independent of the
numbers L and I which control the deviation of tn from n (n # Z).

As an immediate consequence of Corollary 1.2, we obtain the following

Corollary 1.3. Let f be an entire function of exponential type _<?
satisfying

| f (x)|=O \exp \ |x|
(log |x| )*++ as x � \�,

where *>1. If f vanishes on a sequence (tn)n # Z of points subject to the condi-
tions (1)�(5), then f is identically zero.

2. LEMMAS

Our assumptions on the nodes imply that R(tn)>0 and R(t&n)<0 for
n�N. Let ' :=$�4, which is 1�4 at most since $�1 (see above). Then, as
a consequence of (3), we are able to construct two sequences of positive
real numbers (R+

m )m�N and (R&
m )m�N with the following properties:

R(tm)+'<R+
m <R(tm+1)&'

R(t&m)&'>&R&
m >R(t&(m+1))+'= for all m�N, (13)

|R+
m &n|>'

|R&
m &n|>'= for all m�N and n # N.

(14)

By a simple calculation we obtain the following

Lemma 2.1. Under the hypotheses (1)�(5) and (13) and (14) there exists
an integer S�N so that for all m�S, . # [&?�2, ?�2], and n�N we have

|R+
m ei.&tn |

|&R&
m ei.&t&n |=>

'
2

. (15)
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Proof. We shall prove only the first inequality. The proof of the second
inequality is very similar.

The conditions (3) and (4) reveal that for N�n�m the point tn lies
inside the circle of radius |R(tm)+iI | centered at the origin, whereas for
N�m<n it lies outside the concentric circle of radius R(tm+1). An
elementary calculation shows that

R+
m &|R(tm)+iI |>

'
2

if

I2

R(tm)
<'.

Clearly, this condition is satisfied for sufficiently large m. Hence there exists
an integer S�N such that

|R+
m ei.&tn |�min[R+

m &|R(tm)+iI |, R(tm+1)&R+
m ]>

'
2

for all n�N and m�S. K

In the following we shall always represent the nodes as

tn=: rn ei%n with rn # R and %n # [&?�2, ?�2] (16)

(n # Z). Note that by this convention rn is not restricted in sign. More
precisely, rn and n are of the same sign provided that |n|�N.

Lemma 2.2. Let K # N and j # Z with K+j�N. Then the infinite product

P(m, .) := `
�

n=K }
n+R+

m ei (.&%&(n+j ) )

n+R+
m ei. }

converges absolutely for all m�N and . # [&?�2, ?�2]. Furthermore, there
exist a positive real number C2 and an integer S�N such that

P(m, .)�C2 (17)

for all m�S and . # [&?�2, ?�2].

Proof. Without loss of generality we may assume that . # [0, ?�2].
Otherwise, we can argue with the sequence (t� n)n # Z , which also satisfies the
hypotheses (1)�(5). Defining

F(n, m, .) := } n+R+
m ei (.&%&(n+j ) )

n+R+
m ei. } ,
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we obtain by a straightforward calculation that

(F(n, m, .))2=1+
2nR+

m (cos(.&%&(n+j))&cos .)

|n+R+
m ei. | 2

=1+
4nR+

m

|n+R+
m ei. | 2 sin \

%&(n+j )

2 + sin \
2.&%&(n+j )

2 + .

As a consequence of (2) and (4), we find for the modulus of

g(n, m, .) :=(F(n, m, .))2&1

that

| g(n, m, .)|�
4nR+

m

|n+R+
m ei. | 2

I
n+j&L

�
4C3R+

m

|n+R+
m ei. | 2 ,

where C3 :=sup[nI�(n+j&L): n�K]<�.
Since |n+R+

m ei. | 2�n2, the infinite product >�
n=K (F(n, m, .))2 con-

verges absolutely. Using the inequality |- x&1|�|x&1|, which holds for
positive x, we deduce that P(m, .) also converges absolutely.

Let us choose S�N so that for all m�S, n�K, and . # [0, ?�2] we
have

4C3R+
m

|n+R+
m ei. | 2�

1
2

.

Now applying the inequality e&2 |x| �1+x, which holds for x # [&1
2 , �),

we find for all m�S that

(P(m, .))2� `
�

n=K

exp(&2 | g(n, m, .)| )�exp \&2 :
�

n=K

4C3R+
m

|n+R+
m ei. | 2+ .

Hence

P(m, .)�exp \&4C3 R+
m :

�

n=K

1
n2+(R+

m )2+
�exp \&4C3 R+

m |
�

K&1

dx
x2+(R+

m )2+
=exp \&4C3 \?

2
&arctan

K&1
R+

m ++
�exp(&2?C3),

which shows that (17) holds, too. K
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A useful result is the following

Lemma 2.3. Let J be a non-negative real number. Then

|sin(?(z&iJ ))|=
sinh(?J )

J
|z&iJ | `

�

n=1
} 1&

z
n+iJ } } 1&

z
&n+iJ }

holds for all complex numbers z.

Proof. Using the representations of sin and sinh by infinite products
[6, p. 44, Sect. 1.431], we obtain that

|sin(?(z&iJ ))|
sinh(?J)

=
? |z&iJ | `

�

n=1
} 1&

z&iJ
n } } 1&

z&iJ
&n }

?J `
�

n=1
} 1+

iJ
n } } 1+

iJ
&n }

=
|z&iJ |

J
`
�

n=1
} 1&

z
n+iJ } } 1&

z
&n+iJ } . K

Now we are able to find an estimate for the growth of the canonical
product defined in (6).

Lemma 2.4. Let (tn)n # Z be a sequence of nodes satisfying (1)�(5). Let G
be the canonical product corresponding to (tn)n # Z and let the sequences
(R+

m )m�N and (R&
m )m�N be subject to (13) and (14).

Then there exists an integer S�N so that for all m�S we have

|G(R+
m ei.)|�C4(R+

m )&2L H(R+
m ei.) if . # (&?�2, ?�2), (18)

|G(R&
m ei. )|�C5(R&

m )&2L H(R&
m ei.) if . # (?�2, 3?�2), (19)

where H is defined by

H(Rei.) :={R&2L

e?(R |sin .|&I ) |sin .| 2L

if |sin .|�(4I+2L)�R
if |sin .|>(4I+2L)�R

for all positive real numbers R. The positive real numbers C4 and C5 are
independent of m and ..

Proof. We may restrict ourselves to a proof of (18) for . # [0, ?�2) as
can be seen from the following. Along with (tn)n # Z the sequences (t� n)n # Z ,
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(&t&n)n # Z , and (&t� &n)n # Z also satisfy the hypotheses (1)�(5). Hence, if
we apply inequality (18) for . # [0, ?�2) to the canonical products

G1(z)=(z&t� 0) `
�

n=1
\1&

z
t� n+\1&

z
t� &n+ ,

G2(z)=(z&(&t0)) `
�

n=1
\1&

z
&t&n+\1&

z
&tn+ ,

G3(z)=(z&(&t� 0)) `
�

n=1
\1&

z
&t� &n+\1&

z
&t� n+ ,

we arrive at (18) for . # (&?�2, 0] and (19) for . # [?, 3?�2) and . # (?�2, ?].
For . # [0, ?�2) and m�N we introduce

zm :=xm+iym :=R+
m ei..

Clearly, xm , ym , and zm depend on .. For convenience we do not express
this fact in our notation but keep it in mind in the following consideration.

In the following Cj ( j=6, ..., 15) and Sj ( j=1, ..., 4) denote appropriate
positive numbers which do not depend on m or .. We do not need them
explicitly but in cases where their value is easily accessible we indicate their
construction.

Let us choose a positve integer S1 satisfying

S1>max[ |n+iI |, |tn | : |n|�N&1]+L+1.

Then the function

h(z) :=
(z&t0) `

N&1

n=1
\1&

z
tn+\1&

z
t&n+

(z&iI ) `
N&1

n=1
\1&

z
n+iI+\1&

z
&n+iI+

is defined for all z # D :=[! # C : |!|�S1&L]. Furthermore, there exists a
positive real number C6 such that

|h(z)|�C6

for all z # D. We define

P(z) := `
�

n=N \1&
z
tn+\1&

z
t&n+ .
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Since zm # D for all m�S1 , we have

|G(zm)|�C6 |zm&iI | `
N&1

n=1
} 1&

zm

n+iI } } 1&
zm

&n+iI } |P(zm)| (20)

for all m�S1 . We shall find a lower bound for |P(zm)| mainly by
geometric arguments.

Using (16) and noting that r&n<0 for n�N, we can easily see that

|P(zm)|� `
�

n=N } 1&
zm

tn } }1&
zmei |%&n |

r&n } .
For .+|%&n |�?�2 it follows from (5) that for all n�N

}1&
zmei |%&n |

r&n }� } 1+
zmei |%&n |

n+L } . (21)

A geometrical reflection shows that in the case of .+|%&n |>?�2 the
inequality (21) is also valid if

cos(?&(.+|%&n | ))�
R+

m

n+L
. (22)

But (22) is satisfied as soon as R+
m �I(N+L)�(N&L). Indeed, under that

restriction

cos(?&(.+|%&n | ))�sin |%&n |�
I

|t&n |
�

I
n&L

�
R+

m

n+L

for n�N. Thus, in conjunction with Lemma 2.2, we find that

|P(zm)|�C2 `
�

n=N } 1&
zm

tn } } 1+
zm

n+L } (23)

for m�S2 :=max[S, S1 , I(N+L)�(N&L)+L], where S is chosen
according to Lemma 2.2. For a lower bound of |1&zm�tn | we distinguish
two cases which correspond to those in the definition of the function H of
our lemma.

Case 1. Let I(zm)=ym>4I+2L.
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Since . # [0, ?�2), we have R(zm)=xm>0. Defining pn :=R(tn), we find
that

}1&
zm

tn }
2

�
( pn&xm)2+( ym&I )2

p2
n+I 2 .

A discussion of the function

f (t) :=
(t&xm)2+( ym&I )2

t2+I 2

by standard methods of calculus shows that f has an absolute minimum at

{m :=
1

2xm
((R+

m )2&2ym I+- ((R+
m )2&2ymI )2+4x2

mI 2)

and is strictly decreasing for t # [0, {m] and strictly increasing for t # [{m , �).
As a consequence, we obtain that

}1&
zm

tn }� } 1&
zm

n+L+iI } if n�{m&L

and

}1&
zm

tn }� } 1&
zm

n&L+iI } if n�{m+L.

For all m�S2 we find the following estimate for {m :

R+
m &2I
cos .

�{m . (24)

Therefore, for all m�S3 :=max[S2 , 2I+2L+N+1] we have

w{m x�N+L,

where wxx denotes the integer part of x. Since

} 1+
zm

n }= } n+zm

n+zm&iI } }
n&iI

n } } 1&
zm

&n+iI }> } 1&
zm

&n+iI } ,
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it follows from (23) for all m�S3 that

|P(zm)|�C2 `

w{m x&L

n=N }1&
zm

n+L+iI } }1&
zm

&(n+L)+iI }
_ `

w{m x+L

n=w{m x&L+1
}1&

zm

tn } }1&
zm

&(n+L)+iI }
_ `

�

n=w{m x+L+1
}1&

zm

n&L+iI } }1&
zm

&(n+L)+iI }

�C2

`

w{m x+L

n=w{m x&L+1 }1&
zm

tn }
`

N+L&1

n=N }1&
zm

n+iI } }1&
zm

&n+iI }
`
�

n=N }1&
zm

n+iI } }1&
zm

&n+iI } .

The denominator is the modulus of a polynomial in zm of degree 2L. Thus,
there exists a positive real number C7 such that

|P(zm)|�C7(R+
m )&2L `

w{m x+L

n=w{m x&L+1
} 1&

zm

tn } `
�

n=N } 1&
zm

n+iI } } 1&
zm

&n+iI }
(25)

for all m�S3 .
Let n�w{m x&L+1. Then

sin |%n |�
I

|tn |
�

I
R(tn)

�
I

n&L
�

I
w{m x&2L+1

�
I

R+
m &2I&2L

,

where we used (24) in the last step. On the other hand,

sin .�
4I+2L

R+
m

and so

sin .
sin |%n |

�
4I+2L

I \1&2
I+L
R+

m +�
4I+2L

I \1&2
I+L

4I+2L+=2.

This implies that

|%n |�min[., ?�6].

246 J. J. VOSS



File: 640J 307113 . By:CV . Date:16:07:01 . Time:06:06 LOP8M. V8.0. Page 01:01
Codes: 1960 Signs: 717 . Length: 45 pic 0 pts, 190 mm

Along with a geometrical reflection, we arrive at

} 1&
zm

tn }�sin(.&|%n | )

=sin . \cos |%n |&cos .
sin |%n |

sin . +
�sin . \cos |%n |&

1
2

cos .+
�

1
2

sin . cos |%n |

�
- 3

4
sin .. (26)

Combining (20), (25), and (26) and applying Lemma 2.3, we obtain that

|G(zm)|�C8(R+
m )&2L |sin .| 2L |sin(?(zm&iI ))| (27)

for all m�S3 and C8 :=C6C7(- 3�4)2L I�sinh(?I ).
Since

|sin(x+iy )|�
e | y |&e&| y |

2
=

e | y |

2
(1&e&2 | y | )�C10e | y | (28)

for all | y |�C9>0, where C10 :=(1&exp(&2C9))�2, the inequality (18)
follows from (27) in the case sin .>(4I+2L)�R.

Case 2. Let 0�I(zm)�4I+2L.

Defining again pn :=R(tn), we have

}1&
zm

tn }� } 1&
xm+iI
pn+iI }

for all n�N. Analogous considerations show that

}1&
zm

tn }� } 1&
xm+iI

n+L+iI } if n�xm&L (29)

and

}1&
zm

tn }� } 1&
xm+iI

n&L+iI } if n�xm+L. (30)
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Note that

}1+
zm

n }� } n+xm

n&iI }= } 1&
xm+iI
&n+iI } . (31)

For all m�S3 we have wxm x�N+L. Therefore, after combining (23) and
(29)�(31) we obtain that

|P(zm)|�C2 `
wxm x&L

n=N } 1&
xm+iI

n+L+iI } } 1&
xm+iI

&(n+L)+iI }
_ `

wxm x+L

n=wxm x&L+1
} 1&

zm

tn } } 1&
xm+iI

&(n+L)+iI }
_ `

�

n=wxm x+L+1
} 1&

xm+iI
n&L+iI } } 1&

xm+iI
&(n+L)+iI }

=C2

`
wxm x+L

n=wxm x&L+1

1
|tn |

|tn&zm |

`
N+L&1

n=N } 1&
xm+iI
n+iI } } 1&

xm+iI
&n+iI }

_ `
�

n=N } 1&
xm+iI
n+iI } } 1&

xm+iI
&n+iI } (32)

for all m�S3 . Note that

lim
m � �

|R+
m &xm |=0. (33)

Therefore, using the estimates (5) and (15), we can find a positive real
number C11 such that

`

wxm x+L

n=wxm x&L+1

1
|tn |

|tn&zm |�C11(R+
m )&2L. (34)

Since the denominator in (32) is the modulus of a polynomial in xm of
degree 2L, there exists a positive real number C12 such that

`
N+L&1

n=N } 1&
xm+iI
n+iI } } 1&

xm+iI
&n+iI }�C12(R+

m )2L. (35)
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Using (20) and (32)�(35) and applying Lemma 2.3 again, we arrive at

|G(zm)|�C13(R+
m )&4L

|zm&iI | `
N&1

n=1
} 1&

zm

n+iI } } 1&
zm

&n+iI }
xm `

N&1

n=1 } 1&
xm+iI
n+iI } } 1&

xm+iI
&n+iI }

|sin(?xm)|

(36)

for all m�S3 , where C13 :=C2C6C11I�(C12 sinh(?I )).
Combining (14) and (33), we can choose an integer S4�S3 so that

|xm&n|>'�2 for all m�S4 and n # N. In particular, |sin(?xm)| has the
positive lower bound sin(?'�2). A simple discussion yields that the fraction
in (36) has a positive lower bound C14 . Thus, we finally find that

|G(zm)|�C15(R+
m )&4L,

where C15 :=C13C14 sin(?'�2). This completes the proof. K

Using the same techniques as in the proof of Lemma 2.4, we obtain

Lemma 2.5. Let (tn)n # Z be a sequence of nodes satisfying (1)�(5). Let G
be the canonical product corresponding to (tn)n # Z .

Then there exists a positive real number y0>I so that

|G(iy )|�C16 y&2Le?( y&I ), (37)

|G(&iy )|�C17 y&2Le?( y&I ) (38)

for all y�y0 . The positive real numbers C16 and C17 are independent of y.

Proof. We shall indicate only the proof of (37). As above, we can find
positive real numbers y0>2I and C18 such that

|G(iy)|�C18 | y&I | `
N&1

n=1
} 1&

iy
n+iI } } 1&

iy
&n+iI }

_ `
�

n=N }1&
iy
tn } } 1&

iy
&(n+L)+iI }

for all y�y0 . Defining pn :=R(tn), we have

}1&
iy
tn }

2

�
p2

n+( y&I )2

p2
n+I 2 .
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A discussion of the function

f� (t) :=
t2+( y&I )2

t2+I 2

yields that

}1&
iy
tn }� } 1&

iy
n+L+iI }

for all n�N and y>2I.
Applying Lemma 2.3 and the estimate (28), we can establish (37) by

means of some simple calculations. K

3. PROOFS OF THE RESULTS

Proof of the Theorem. Since

G(z)
(z&tn) G$(tn)

={1
0

if z=tn

if z=tm (m{n),

it suffices to prove (9) for z{tn (n # Z).
Now we consider the positively oriented Jordan curves Sm, n defined by

Sm, n :=[R+
m ei. : . # (&?�2, ?�2)] _ [iR+

m , iR&
n ]

_ [R&
n ei. : . # (?�2, 3?�2)] _ [&iR&

n , &iR+
m ]

for m, n�N and the contour integral Im, n(z) defined by

Im, n(z) :=
1

2?i |Sm, n

f (`) 8(`&z)
(`&z) G(`)

d`

for m, n�S and z # C"Sm, n (S # N chosen according to Lemma 2.1). Let m
and n in the following be large enough for z to lie in the interior of the
Jordan curves Sm, n . Then using the residue theorem, we find that

Im, n(z)=
f (z) 8(0)

G(z)
+ :

m

i=&n

f (ti ) 8(ti&z)
(ti&z) G$(ti )

and so

f (z) 8(0)=Im, n(z) G(z)+ :
m

i=&n

f (ti )
8(ti&z)

z&ti

G(z)
G$(ti )

.
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Therefore, to prove (9) we must only show that

lim
m � �

lim
n � �

Im, n(z)=0

for all complex numbers z which are different from tk (k # Z) with uniform
convergence if z lies in a compact subset of C.

Using the assumptions (7) and (8), we may apply a well-known estimate
for entire functions of exponential type [3, Lemma 2; 5, Lemmas 1 and 2]
to obtain that

| f (Rei.) 8(Rei.&z)|�C1(z)R&4Le?R |sin .|

for all positive real numbers R, . # [0, 2?] and z # C.
Let |z|�M for a positive real number M. Without loss of generality we

may assume that R+
m �R&

n .
Then, applying Lemmas 2.4 and 2.5, we find for all m, n�max[M+4I+

3L+1, S, y0+L] (S and y0 chosen according to Lemmas 2.4 and 2.5) that

2? |Im, n(z)|

�|
?�2

&?�2 }
f (R+

m ei.) 8(R+
m ei.&z)

(R+
m ei.&z) G(R+

m ei.)
R+

m } d.+|
R n

&

Rm
+ } f (iy ) 8(iy&z)

(iy&z) G(iy) } dy

+|
3?�2

?�2 } f (R&
n ei.) 8(R&

n ei.&z)
(R&

n ei.&z) G(R&
n ei.)

R&
n } d.+|

&Rm
+

&Rn
& } f (iy ) 8(iy&z)

(iy&z) G(iy ) } dy

�
2C1(z)

C4

R+
m

R+
m &M |

arcsin((4I+2L)�R m
+ )

0
e?Rm

+ sin . d.

+
2C1(z)

C4

R+
m

R+
m &M |

?�2

arcsin((4I+2L)�Rm
+)

e?Rm
+ sin .

(R+
m )2L (sin .)2L e?(Rm

+ sin .&I )
d.

+
2C1(z)

C5

R&
n

R&
n &M |

arcsin((4I+2L)�R n
& )

0
e?R n

& sin . d.

+
2C1(z)

C5

R&
n

R&
n &M |

?�2

arcsin((4I+2L)�Rn
&)

e?Rn
& sin .

(R&
n )2L (sin .)2L e?(Rn

& sin .&I ) d.

+2C1(z) max { 1
C16

,
1

C17=
1

R+
m &M |

R n
&

R m
+

e?y

y2Le?( y&I ) dy.
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Using the inequalities

2
?

x�sin x�x for 0�x�
?
2

and

y�arcsin y�
?
2

y for 0� y�1

to simplify the integrals, we obtain that

2? |Im, n(z)|�C19 |
(?�2)((4I+2L)�R m

+)

0
e?Rm

+ x dx

+C19

e?I

(R+
m )2L |

?�2

((4I+2L)�R m
+) \

2
?

x+
&2L

dx

+C19 |
(?�2)((4I+2L)�R n

&)

0
e?R n

&x dx

+C19

e?I

(R&
n )2L |

?�2

((4I+2L)�R n
& ) \

2
?

x+
&2L

dx

+C20

e?I

R+
m &M |

�

R m
+

x&2L dx,

where

C19 :=2 sup[C1(`): |`|�M] max { 1
C4

,
1

C5=
M+4I+2L+1

4I+2L+1
<�

and

C20 :=2 sup[C1(`): |`|�M] max { 1
C16

,
1

C17=<�.

After some simple calculations we finally find that

|Im, n(z)|�C21 max { 1
R+

m

,
1

R&
n =

for a positive real number C21 which is independent of z. This completes
the proof. K

Proof of Corollary 1.2. We choose 8=�((1+:)�2, =, } ) in the theorem.
Therefore, we must only prove that (8) is valid with sup[C1(`): |`|�T]<�
for all positive real numbers T.
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For all y0>0 we have

|8(x+iy )|=O \exp \&
|x|

(log |x| ):++ as x � \�

uniformly for | y |�y0 [13, Lemma 1].
Since

lim
x � �

x4L exp \&x \ 1
(log x):1

&
1

(log x):2++=0

for all 1<:1<:2 , the corollary is established. K
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